Usually,► we have no control over the sample size of a data set. However, if we are able to set the sample size, as in cases where we are taking a survey, it is very helpful to know just how large it should be to provide the most information. Sampling can be very costly in both time and product. Simple telephone surveys will cost approximately $30.00 each, for example, and some sampling requires the destruction of the product. If we go back to our standardizing formula for the sampling distribution for means, we can see that it is possible to solve it for n. If we do this we have \((\overline
What was done in cases when looking for the mean of a distribution can also be done when sampling to determine the population parameter \(p\) for proportions. Manipulation of the standardizing formula for proportions gives: \[n=\frac^ \mathrm> This table is designed to show the maximum sample size required at different levels of confidence given an assumed \(p= 0.5\) and \(q=0.5\) as discussed above. The acceptable error, called tolerance in the table, is measured in plus or minus values from the actual proportion. For example, an acceptable error of 5% means that if the sample proportion was found to be 26 percent, the conclusion would be that the actual population proportion is between 21 and 31 percent with a 90 percent level of confidence if a sample of 271 had been taken. Likewise, if the acceptable error was set at 2%, then the population proportion would be between 24 and 28 percent with a 90 percent level of confidence, but would require that the sample size be increased from 271 to 1,691. If we wished a higher level of confidence, we would require a larger sample size. Moving from a 90 percent level of confidence to a 95 percent level at a plus or minus 5% tolerance requires changing the sample size from 271 to 384. A very common sample size often seen reported in political surveys is 384. With the survey results it is frequently stated that the results are good to a plus or minus 5% level of “accuracy”. Example \(\PageIndex<9>\) Suppose a mobile phone company wants to determine the current percentage of customers aged 50+ who use text messaging on their cell phones. How many customers aged 50+ should the company survey in order to be 90% confident that the estimated (sample) proportion is within three percentage points of the true population proportion of customers aged 50+ who use text messaging on their cell phones. Answer Solution 8.9 From the problem, we know that the acceptable error, \(e\), is 0.03 (3%=0.03) and \(z_> Z_=1.645\) because the confidence level is 90%. The acceptable error, \(e\), is the difference between the actual population proportion p, and the sample proportion we expect to get from the sample. However, in order to find \(n\), we need to know the estimated (sample) proportion \(p^<\prime>\). Remember that \(q^ <\prime>= 1 – p^<\prime>\). But, we do not know \(p^<\prime>\) yet. Since we multiply \(p^<\prime>\) and \(q^<\prime>\) together, we make them both equal to 0.5 because \(p^<\prime>q^ <\prime>= (0.5)(0.5) = 0.25\) results in the largest possible product. (Try other products: \((0.6)(0.4) = 0.24; (0.3)(0.7) = 0.21; (0.2)(0.8) = 0.16\) and so on). The largest possible product gives us the largest n. This gives us a large enough sample so that we can be 90% confident that we are within three percentage points of the true population proportion. To calculate the sample size n, use the formula and make the substitutions. \(n=\frac Exercise \(\PageIndex<9>\) Suppose an internet marketing company wants to determine the current percentage of customers who click on ads on their smartphones. How many customers should the company survey in order to be 90% confident that the estimated proportion is within five percentage points of the true population proportion of customers who click on ads on their smartphones?9> This page titled 8.5: Calculating the Sample Size n- Continuous and Binary Random Variables is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax.
Required sample size (90%) Required sample size (95%) Tolerance level 1691 2401 2% 752 1067 3% 271 384 5% Table \(\PageIndex\)68 96 10%